
ARKTALAS HOAVVA PROJECT

DELIVERABLE D-50: VERIFICATION REPORT FOR ADAS AND AVS
IMPLEMENTATION

Customer ESA

Author Consortium

Distribution Consortium and ESA

ESA Contract Number 4000127401/19/NL/LF

Document Reference
SoW Deliverable Reference D50

Version/Revision 1.0

Date of issue 13 April 2021

Approved by
(NERSC)

Johnny A. Johannessen
NERSC Project Manager

Approved by
(ESA)

Craig Donlon
ESA Technical Officer

Revision Change log

Issue Date Type Change description
0.5 19 March 2021 Draft Initial version
1.0 13 April 2021 Final Final version

This Deliverable D-50: Technical Note (TN) is associated with Task 2b: Implementation of
Analyses and Visualization System. It follows the structure and outline indicated in the
Statement of Work (SoW) and the Arktalas Hoavva technical project proposal.

Table of Contents

1 OVERVIEW ... 3

2 COMMUNICATION BETWEEN ADAS AND AVS ... 4

2.1 Design ... 4
2.2 Implementation on NERSC infrastructure .. 6

1 OVERVIEW
Arktalas data are processed by a system structured around two main components: the Arktalas-
Data Archive System (ADAS) which is responsible for listing, downloading and storing data
of interest for the studies, and the Arktalas Hoavva Analysis and Visualisation System (AVS)
which transforms some of these data into representations that can be displayed at full resolution
on an interactive map.

The ADAS and the AVS must be hosted on the same infrastructure to avoid unnecessary data
transfers and to simplify the orchestration of data processing operations. It does not mean that
data discovery, storage and processing are limited to a single infrastructure: multiple systems,
each comprised of one ADAS and one AVS, can be deployed on different infrastructures and
the Arktalas visualisation portal will be able to access and display the data available in each
AVS on the same map, as shown in Figure 1. This distributed architecture makes the overall
solution easy to extend, the addition of a new ADAS-AVS couple requiring only a few changes
in the portal configuration file.

Given these requirements, the communication between the ADAS and the AVS must be as
independent from the underlying infrastructure as possible.

Figure 1: Distributed architecture for the backend of the Arktalas visualisation portal

2 COMMUNICATION BETWEEN ADAS AND AVS

2.1 Design
The communication between the ADAS and the AVS is based on files that the ADAS creates
in a shared directory which is readable by the AVS. If the ADAS and the AVS are not running
on the same machine, this directory must be either shared over the network or replicated on the
AVS machine using a synchronization mechanism.

This directory, designated as the ADAS spool directory, contains two types of files:

• the data downloaded by the ADAS, or a symbolic link to the actual files to avoid data
duplication

• flag files that contain metadata about the downloaded data, so that the AVS can identify
the nature of the files and pass them to the adequate processing chain

The ADAS harvests information from data providers (such as OSISAF and the Copernicus
Open Access Hub) periodically to update a database that keeps track of the files available for
download and the associated metadata. The files that are relevant for the Arktalas studies are
then downloaded automatically. Upon completion of a download, the ADAS first copies (or
create a symbolic link to) the data in the ADAS spool directory, then it creates another file
named like the data file with an additional .flag extension and puts metadata related to the
downloaded file in this “flag file”.

The metadata inside the flag file include at least one URL where the file can be downloaded
from, a “type” field which identifies the product (or data set) which the file belongs to, and
potentially other fields describing the origin and contents of the file.

A script is then responsible for periodically inspecting the content of the ADAS spool directory
and listing all the files that end with the .flag extension: since the ADAS creates the .flag files
only after copying the data files (or creating the symbolic links), listing the .flag files is a safe
way to detect the data that are ready for processing.

The detected flag files are then registered in a local database, the AVS jobs database, to keep
track of their processing status: a new entry is created for each flag file that was not already
registered and all new entries are marked as “requiring processing”. The script then queries the
jobs database for all entries that yet need to be processed, creates a processing job file in a
dedicated directory (AVS spool directory), and finally marks these entries as “dispatched” so
that they are not sent to the AVS processing chains multiple times.

A service monitors the content of the AVS spool directory and triggers a processing script each
time a new processing job file is created in the spool. This script reads the path of the flag file
to process from the processing job file, selects a processing chain using the “type” field
extracted from the flag file and then executes this chain on the input file (located by removing
the .flag extension from the path of the flag file).

Upon completion the processing chain marks the flag file as “processed” in the jobs database
and the script removes the processing job file from the AVS spool directory.

The ADAS periodically removes the files it created in the ADAS spool directory after a delay
whose duration exceeds by a fair amount the time it takes for the AVS to process the data. The

ADAS-AVS system is not meant to be used for operational services so there is no real time
error reporting. Failures can be detected quite easily though, either by looking for processing
jobs that have been dispatched but not completed in the AVS jobs database, or by searching for
files older than a threshold in the AVS spool directory. The data flow starting from the files
downloaded by the ADAS and ending with their publication in the Arktalas visualisation portal
is described in Figure 2.

Figure 2. Design for the ADAS-AVS communication mechanism

2.2 Implementation on NERSC infrastructure
An instance of the ADAS-AVS system has been deployed on the NERSC infrastructure. The
initial design has been slightly adapted to be compatible with this platform and its management
policy:

• the ADAS spool directory, as well as the storage for downloaded data, is shared with
the machine hosting the AVS service over the network using the NFS protocol

• when the AVS service starts, it marks all the incomplete processing jobs (i.e. jobs that
were dispatched but whose processing was interrupted due to the AVS service
shutdown) as “requiring processing” so that they are dispatched again and completely
processed during the next execution of the CRON job. This mechanism allows the
system to recover by itself after a crash or a reboot.

• the AVS component has been split into two parts, each running on a separate virtual
machine:
◦ the Web part comprised of the Syntool database, the Syntool webservice and the

Web server (Nginx)
◦ the processing part which includes the CRON job, the AVS jobs database and the

AVS service in charge of managing the processing chains
• once the data required by the Arkatalas studies have all been ingested in the AVS, the

processing part will not be necessary anymore, so the virtual machine hosting the
processing system can be shut down to save resources

• instead of sending results directly to the Web virtual machine, the processing chains
store all the results they generate (including SQL statements) in a shared directory and
the Web virtual machine imports these results periodically. This solution adds a delay
before data can be published but it removes coupling between the two virtual machines,
thus allowing processing to occur even when the Web virtual machine is offline.

This implementation has been tested successfully with OSISAF sea ice concentration products
and Sentinel-1 SAR roughness data, as agreed during Progress Meeting 3. The screenshot in
Figure 3 shows how the data processed during these tests are rendered in the Arktalas
visualisation portal.

Figure 3: OSISAF sea ice concentration (AMSR-2 and multi-sensor) and SAR roughness from Sentinel-1
displayed in the Arkatalas visualisation portal

		2023-10-22T08:13:59+0200
	Craig James Donlon

