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The Copernicus Sentinel-2 image of oil (diesel) spill into the river Ambarnaya near

Norilsk, Russia. The image from June 1%, 2020, was processed by ESA and made available under CC
BY-SA 3.0 IGO license on https://www.esa.int/ESA _Multimedia/lmages/2020/06/Arctic_Circle oil spill.
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Temperature Anomalies [°C]

Courtesy: Esau et al. Figure 1

Emergence of the apparent Amplification

Surface Atmospheric Temperature Anomalies from GISSTEMP
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L e How much faster is the Arctic warming than the global average?

NASA GISTEMP 1970-2019 annual means
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Emergence of the Arctic Amplification shown through the annual temperature anomalies in high latitudes (64N-90N, blue line) and the
Northern Hemisphere (NHem, red line). The color strips show divergence rate of temperature anomalies averaged within 7-years moving
window. Red — high divergence rate, blue — negative divergence (convergence) rate. Dataset: GISTEMP/AIRS.



Theory:

Alexeev, V.A., Langen, P.L., Bates, J.R., 2005. Polar amplification of
surface warming on an aquaplanet in “ghost forcing” experiments
without sea ice feedbacks. Clim. Dyn. 24, 655-666.
https://doi.org/10.1007/s00382-005-0018-3

Alexeev, V.A., Jackson, C.H., 2013. Polar amplification: Is
atmospheric heat transport important? Clim. Dyn. 41, 533-547.
https://doi.org/10.1007/s00382-012-1601-z

HdT]/dt:SI —F—(A+BT1)—|—8
Hde/dlISg(l —2oca)—i—F— (A+BT2)+8

F=Fy+ 71(T1 — Tz) + “/2C(T])(T1 — TQ)
2 modes of solution:

- Fast —corresponds to the Amplification
- Slow — corresponds to ocean responses

e Climate processes are slow — require decades of observations

* Understanding of climate processes requires models — models are imperfect

* Climate processes are complex and interactive — require multiple observational datasets (products)


https://doi.org/10.1007/s00382-005-0018-3
https://doi.org/10.1007/s00382-012-1601-z

Reanalysis, models imperfections, and discrepancies
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Time series of annual 2-m temperature averaged
over Arctic Ocean domain from 12 reanalyses (K).
Reanalyses using threshold ice cover are show as
dashed lines, and five contemporary reanalyses are
indicated with bold lines. Corresponding AIRS-AMSU
and ISCCP 2-m air temperature are also shown.

Marquardt Collow, A.B., Cullather, R.l., Bosilovich, M.G.,
2020. Recent arctic ocean surface air temperatures in
atmospheric reanalyses and numerical simulations. J.
Clim. 33, 4347-4367. https://doi.org/10.1175/JCLI-D-
19-0703.1
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Essential climate variables in ESA CCl
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Popp, T., et al. 2020. Consistency of Satellite Climate Data
Records for Earth System Monitoring. Bull. Am.
Meteorol. Soc. 101, E1948-E1971.
https://doi.org/10.1175/BAMS-D-19-0127.1
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Arctic Data Availability and Quality

Observing
Systems

AWS

| |
CryoSat2, SIRAL

—
SMOS
In Situ Sea Ice Detectors

In Situ Glacier Gates

[
SAR

GRACE-FO
DMSP: SSMIS

A%Ja and Terra:
MODIS

METOP: AVHRR

rSitu Buoys

Ships
GCOM-W1: AMSR2

|
In Situ Snow Depth

-
GEOStationary VIR
I
In Situ Land Snow

JPSS: VIIRS

Observation and Model-derived Data Products

NCEP-NCAR
Reanalysis

[ ]
BedMachine3

ERA-Interim Reanalysis

||
CRUTEM4

NSIDC Sea Ice Index

i
CryoSat2 SMOS Sea Ice Thickness

—
EASE-Grid Sea Ice Age v4

DMI Weather Station Data

PROMICE Weather Station Data

PROMICE Solid Ice Discharge
GRACE-FO Level-2 RLO6

MEaSUREs Greenland Surface Melt
PROMICE MODIS Climate Data Record
|

GIMMS-3g

Land Surface Temperature

NOAA Optimum Interpolation SST

NASA Ocean Color Chlorophyll-a

Multi-Model SWE

NOAA Snow Chart Climate Data Record

Vital Signs of the Societal

Arctic Report Card Benefits
|
Surface Air
Temperature

Fundamental

. Underst?gdirg.g

of Arctic

Sealce Systems

Greenland
Ice Sheet

Tundra
Greenness

Sea Surface
Temperature

Ocean Primary
Productivity
==

Terrestial
Snow Cover
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IDEAL  Meets all requirements and exceeds
some
FULLY
SATISFIED

Meets major requirements with
GOOD  inor limitations

Meets all requirements

o Either missing requirements or with
GOOD FAIRgreater limitations

FAIR Meets most major requirements, with
significant limitations

FAIR-POOR Meets some requirements but with
significant limitations

Source:

15-Year Retrospective Analysis on AON

The Observational Foundation of the Arctic
Report Card - a 15-Year Retrospective Analysis on
the Arctic Observing Network (AON) and Insights
for the Future System DOI: 10.25923/ahj5-z336
by S. Starkweather, H. Shapiro, S. Vakhutinsky,
and M. Druckenmiller



https://doi.org/10.25923/ahj5-z336

The Amplification: observations and models before 2000
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Late XXth century (before 2000) — major discrepancy between modelling results and observations
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Trends in SAT (A) estimated from observations, for all months from 1971-2000. [Estimates were provided by W. Chapman] (B) SAT trends estimated from the National
Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, regressed on the AO index for all months from 1948-2002 and
multiplied by the trend in the winter AO index. (C) SAT trends simulated as a response to doubling carbon dioxide levels, averaged over 19 models participating in the
Coupled Model Intercomparison Project. The trend was calculated from the temperature difference averaged for all months in years 60 to 80 from simulations with a
transient 1% increase per year in carbon dioxide minus the 80-year average from a control run with preindustrial carbon dioxide levels divided by 7 decades. Units in (A),

(B), and (C) are °C per decade.

Moritz, R.E., Bitz, C.M., Steig, E.J., 2002. Dynamics of Recent Climate Change in the Arctic. Science (80-. ). 297, 1497-1502. https://doi.org/10.1126/science.1076522
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Emergence of the apparent Amplification (before 2000)
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Locations of the proxy climate records included in the synthesis. Map August UAH MSU lower troposphere before 2000

colors indicate trends in summer (JJA) temperature between 1958 and

2000 from the ERA-40 data series. Large and small symbols indicate

records that extend back to 2000 years ago (2 ka) and to at least 1000

years ago, respectively.

Kaufman et al. 2009. Recent Warming Reverses Long-Term Arctic Cooling.
Science (80-.). 325, 1236-1239. https://doi.org/10.1126/science.1173983



Emergence of the apparent Amplification (after 2000)

. — Annual UAH MSU
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difference, AT, of recent (2001-2012) annual averaged temperatures from a
baseline period of 1971-2000 (Overland et al., 2014). Data are from NCEP/NCAR

reanalysis. The Amplification core area is shown as the region of the temperature
differences AT > 1.0 K (dashed red line). The Arctic fronts are shown for the

summer (brown line) and winter (blue line) seasons (Ladd and Gajewski, 2010).




The Amplification: observations and models after 2000

(a) Observations (c) Models

-0.5 -0.25 0 0.25 0.5

The Amplification represented by the temperature trends (°C per decade for the 30-year period 1988-2017) in
observations (a) and models (c). Observations are taken as the average of HadCRUT4 (Morice et al., 2012),
NASA-GISS (Hansen et al., 2010) and NCDC (Karl et al., 2015). Model trends are computed as the average from
25 CMIP5 model simulations driven by historical and RCP4.5 radiative forcings. Source: (Smith et al., 2019b)

Smith, D. M., Screen, J. A., Deser, C., Cohen, J., Fyfe, J.

C., Garcia-Serrano, J., ... Zhang, X. (2019). The Polar
Amplification Model Intercomparison Project
(PAMIP) contribution to CMIP6: investigating the
causes and consequences of polar amplification.
Geoscientific Model Development, 12(3), 1139-
1164. https://doi.org/10.5194/gmd-12-1139-2019



What has happened in early 2000s?

LOSS OF VERY OLD ICE OVER TIME

March 1985

March 2018 In March 1985, sea ice that had
survived at least four summers
comprised 33% of the Arctic ice pack at
the winter maximum. In March 2019,
such long-lasting sea ice comprised just
over 1%.

—Credit: NOAA Climate.gov, based on

S apbLalt the Arctic Report Card: Update for 2019

gyre
b

Sea ice age (years) NOAA Climate.gov

L . | | Jatas ARG 2018
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https://nsidc.org/cryosphere/seaice/characteristics/multiyear.html
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Sea Ice transitions

Area of Multiyear Ice in Arctic
Week 31 of Melt Season, 1979 to 2021
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National Snow and Ice Data Center

Liu, Y., Key, J.R., Wang, X., Tschudi, M., 2020.
Multidecadal Arctic sea ice thickness
and volume derived from ice age.
Cryosph. 14, 1325-1345.
https://doi.org/10.5194/tc-14-1325-
2020
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Sea Ice transitions

Area of Multiyear Ice in Arctic
Week 31 of Melt Season,

Sea Ice Extent [million km?]

1979 to 2021

1.6 million km?

1985 1990 1995 2000 2005 2010 2015 2020

Arctic Sea Ice Extent in September

Reference period 1981-2010

September Trend:
-84 thousand km?/year
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| V2. 1 Graph was plotted 20/10/2020 12:03 UTC

Source: EUMETSAT OSI SAF (http://osi-saf.eumetsat.int)
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Liu, Y., Key, J.R., Wang, X., Tschudi, M., 2020.
Multidecadal Arctic sea ice thickness
and volume derived from ice age.
Cryosph. 14, 1325-1345.
https://doi.org/10.5194/tc-14-1325-
2020

Kwok, R., 2018. Arctic sea ice thickness, volume, and
multiyear ice coverage: Losses and coupled variability
(1958-2018). Environ. Res. Lett. 13, 105005.
https://doi.org/10.1088/1748-9326/aae3ec



The Amplification and Sea Ice
* ARCTIC CLIMATE MONTHLY TRENDS

i Seasonal trends in the sea ice extent (%
A I dec-1) and the surface air temperature
= o ' : "L . (oCdec-1) in the Arctic Ocean domain.
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Emergence of the apparent Amplification in
Sate ‘lte data Courtesy: Esau et al.

Upper Atmospheric Temperature (UAH MSU TLT)
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Cloud co-variability

Jun, S.-Y,, Ho, C.-H., Jeong, J.-H., Choi, Y.-S., & Kim, B.-M. (2016). Recent changes in
winter Arctic clouds and their relationships with sea ice and atmospheric
conditions. Tellus A: Dynamic Meteorology and Oceanography, 68(1), 29130.
https://doi.org/10.3402/tellusa.v68.29130

Time series of (a) cloud amount, (b) surface temperature,

(c) sea ice cover over the Arctic Ocean (north of 678N) and (d)
Arctic Oscillation (AO) index in winter (December through
February) from ERA-Interim, NCEP CFSR, APP-x and TPP
datasets. Long-term trends are denoted with dashed lines. The
time series of cloud amount, surface temperature and sea ice
cover are re-scaled to adopt the mean and standard deviation
of ERAInterim for comparison.
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Courtesy: Esau et al.
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% Impact of the
‘ Amplification

Afforestation of a burned tundra area
in the northern West Siberia. The left
image is taken by Corona/KH-4b,
21.08.1968; the right image — by
Resurs-P, 28.09.2016. Source: (Sizov et
al., 2020).



Vegetation height
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Bartsch, A., Widhalm, B., Leibman, M., Ermokhina,
K., Kumpula, T., Skarin, A., ... Pointner, G. (2020).
Feasibility of tundra vegetation height retrieval
from Sentinel-1 and Sentinel-2 data. Remote
Sensing of Environment, 237.
https://doi.org/10.1016/j.rse.2019.111515
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Surface morphology
changes

Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., & Boike, J.
(2018). Remote sensing quantifies widespread abundance
of permafrost region disturbances across the Arctic and
Subarctic. Nature Communications, 9(1), 1-11.
https://doi.org/10.1038/s41467-018-07663-3

Examples of key permafrost region disturbances. a Dynamic
lake-rich region in western Alaska with frequent drainage, b

Expanding thermokarst lake in northern Alaska, c Coastal
retrogressive thaw slump on Bykovsky Peninsula in
northeastern Siberia, d Selawik thaw slump in western Alaska,
e Burn scar of wildfire in boreal Alaska, and f Burning tundra
fire in northern Alaska. Photos taken by I. Nitze (b—d), B.M.

Jones (e, f), and M. Fuchs (a)




Permafrost (examD

Feature type
El TKL 1950 E] TKL 2006 oALD eoGTK e RTS

e of a morphological method)

Abundance of abrupt thaw features in lowland and upland
settings in Alaska. Left panels (a, c) show thermokarst lake
(TKL) abundance, expansion, and drainage on the Seward
Peninsula, Northwest Alaska, between 1950 and 2006,
with collapsing permafrost banks. Right panels (b, d) show
extensive distribution of ground collapse and erosion
features (ALD, active layer detachment slide; RTS,
retrogressive thaw slump; GTK, thermal erosion gullies) in
upland tundra in a hill slope region in Northwest Alaska
and thawing icy soils in a retrogressive thaw slump.

Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden,
J. W,, Hayes, D. J., ... Vonk, J. E. (2015). Climate change and
the permafrost carbon feedback. Nature, 520(7546), 171—
179. https://doi.org/10.1038/nature14338
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Sea ice impact on primary production
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Overview of the Arctic climate change

Comprehensive and systematic review of the
Amplification, primarily based on modeling studies

The Arctic energy budget

Contribution of the satellite observations in the
climate change science

Comprehensive review of satellite observations in the
Arctic climate science

Overview of the ESA CCI for climate studies

Satellite observations in the environmental
assessment

Satellite observations of the Arctic clouds
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The Amplification Drivers
omwer  ted  leex

TOA radiation balance More negative (-0.19 + 0.44 W m=2 K1) Insignificant
Surface radiation balance Less negative Enhancing:
- Positive ice-albedo and heat storage
feedbacks
Clouds Uncertain — data disagree Enhancing:
Low-level clouds likely increasing - Positive LW radiation feedback
Atmospheric humidity Increasing Enhancing
Sea ice cover and volume Strongly decreasing Enhancing:

- Positive albedo feedback
- Positive LW radiation feedback

CO2 increase Strongly increasing Enhancing:
- More positive LW radiation feedback in cold

areas
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